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INTRODUCTION

Pulse propagation and wave propagation comprise an important class
of problems in the study of the dynamics of large lattice structures.
The study of pulse and wave propagation has applications in dynamic
failure, control, and nondestructive evaluation.

In this investigation, nondispersive pulse propagation in a simple
one-dimensional lattice structure is analyzed, using both the pulse
summation method and the wave-mode coordinate method. It is shown that
the pulse summation method (a time domain method) and the wave-mode
coordinate method (a frequency domain method) give identical results,
and that both methods account for the existence of equivalent paths in
the lattice structure. Some examples of equivalent paths are given. Also,
some recommendations are made for possible extensions of the analysis

presented here.
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ANALYSIS

& Lattice Definition and Problem Statement

A one-dimensional lattice structure consisting of two segments and
one joint is shown in Fig. 1. It is assumed that the joint is rigid
- and massless, and that the extent of the joint in the x-direction is

small in comparison with 21 or L Segment one has elastic modulus E

2° 1

cross-sectional area A., and mass density Py- Segment two has elastic

1’

® modulus EZ’ cross-sectional area A2, and mass density pz. It is assumed
that longitudinal wave propagation in each segment is governed by the
classical one-dimensional wave equation. Therefore, disturbances in

€ longitudinal force or longitudinal displacement propagate nondispersively

in each segment, and a longitudinal force or displacement pulse introduced

into either segment will maintain its shape as it propagates. The velocity

9 of pulse propagation in segment one is
E
1
e =\/-L (1
1 pl
»

-’ e, =\[= (2)

The characteristic transit time required for a pulse to traverse the

|": length of segment one is
l
L
| ¢
16
| -4 -
-
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and the characteristic transit time required for a pulse to traverse the

N & length of segment two is
! 2
' 27 o (4)
; 2 <y
()

The lengths 2, and 22 are defined in Fig. 1. It is assumed here that the

1

characteristic transit time for segment one is equal to the characteristic

o o~

@ transit time for segment two, or
L)
§ Ty =T, =T (5)
A
L
' & The problem considered here is the following. A longitudinal force

20}‘(11:) is applied to the joint as shown in Fig. 1. It is assumed that the

A
force t) is an impulse of the form

S e e

< oL
. ey -Fs o (6)
{

’ It is desired to find the resulting longitudinal force Fl(t) at point 1,
ni’ the left-hand end of segment one. Note that if point 1 is a free end, then
N Fl(t) = 0, directly from the boundary condition at a free end.
P,
‘
. Pulse Summation Solution
B

<
b Using the pulse summation method described in [1], the following
:: solution may be obtained for Fl(t):
:.
h R 1 min(K,K,)

™ 20 n- min .

- F(c)=:g7(—-l—)(1-r)sm)+ 5 o 12N (R, ,K,,L.)S, (K. ,K,,L,)
P 1 0 \R,+R 0 _ = 1'71°72’71’T1h 1 2 1
L n=0 172 K.,=1 L.=1
- L 1 1
I
1, . n min(Kl,Kz-l)

C + 5 z N. (K, ,K,,L)S, (K. ,K_,L)| « 8(t = (2n + 1)T)
; 27172172 2

K2=1 Ll=0

) (7)

]
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where
- 8
@ Kl + KZ n (8)
n
S(n) = (rorl) (9)
K. K.-L. L. L. K--L. K
IR U ks Wikt WS S Mt W'
Sp(KpsKpaLy) = ryry™ Tt by T T3 (10)
K\ /¥,
N, (K,,K,,L,) = (11)
171N N
1
K. K.-L. L.+l L, K.,-L -1 K
I s Wt W 1 1 ST 2
Sy (K KoL) =7y 1y 31 ty 1, T3 (12)
K\ /K,
NZ(Kl,Kz,Ll) = . . (13)
1 1
R, - R
rl = ._l____z_ (14)
Rl + RZ
R. - R
rz = __g____l (15)
Rl + R2
& ° RZRi R, (16)
17
2R
1
2R +R, J
»
Y
Ry = 44 P1Eq (18) 3
- 9 N
Ry = AV ek (9
-6 -
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The quantities rl and r2 are the (displacement) reflection coefficients

at the joint, and the quantities tl ant t2 are the (displacement) transmission

coefficients at the joint. The coefficient r is the reflection coefficient

for a pulse which arrives at the joint from segment 1, and the coefficient
r, is the reflection coefficient for a pulse which arrives at the joint

from segment 2. The coefficient tl is the transmission coefficient for a

pulse entering segment 1 from segment 2, and the coefficient t2 is the

transmission coefficient for a pulse entering segment 2 from segment 1.

The quantities I, and r, are the (displacement) reflection coefficients at

the left-hand boundary of the lattice (point 1) and the right-hand boundary

of the lattice (point 4), respectively. The reflection coefficient r

may be determined from the boundary conditions at point 1. If, for example,

point 1 is a fixed end, r, = -1, and if point 1 is a free end, r, = 1.

0

may be determined from the boundary

0
Similarly, the reflection coefficient ry
conditions at point 4.

The methods used in the derivation of eqn. (7) are discussed in detail
in [1]. Eqn. (7) is a slightly corrected form of eqn. (A90) in [1], and it
corresponds to the sum of cases I and III defined in Appendix A of [1].
Eqn. (7) consists of an infinite series of impulses which are delayed by
odd multiples of the characteristic transit time T. The quantities S, S1
and SZ’ which contribute to the amplitudes of the impulses, consist of
powers of the reflection and transmission coefficients. The quantities
Nl and N2 are numerical coefficients which will be discussed and interpreted

subsequently. Writing out the first few terms of eqn. (7) gives

R

fw - F () -

+ t.r. ]

. Ié(t - 1)[1] + &§(t - 3T)[r0r1 173

-7 -
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. 22 2
+ 8(t - ST)Lrorl + rotlt2r3 + rorltlr3 + tlrzrg
)
. 3.3 2 2
+ 38t - 71) [rorl + rotlt:zrzr3 + 2r0rltlt2r3
2 2 2 2 2 2 3
0 + Tor 1t T, + rorltlrzr3 + rot:lt?_r3 + tlr2r3:]
’I
r
. 4_4 2.3 2 2, 2222 b
+ 8(t - 91) oty + r0t1t2r2r3 + 2r0r1t1t2r2r3 + r0t1t2r3 ;
| @
32 33 2 2 2 2 2 2
+ 3r0r1t1t2r3 + rorlt1r3 + 1'0rltlr2r3 + 2:‘01:11:lt:2r3
23 2 3 34
C + ror it Tory + 2r0t1t2r2r3 + tlrzr:;[
55 3.4 2.2.2 3 2 2.3
+ 8(t - 117) T + r0t1t2r2r3 + ZrOtltzrzr3 + ZrOrltltzrzr3
o
32 2 3 2.2 2 4 3 4 4
+ 3r0rltlt2r2r3 + 3r0rltlt:2r3 + 4r0r1t1t2r3 + rorltlr3
33 2 322 2 2.2 23 2 2 3
9 + rorltlr2r3 + 3r0rltlt2r3 + rorltlrzr3 + 4r0r1t1t2r2r3 .
2323 3.4 2. 2.4 4 5 g
+ r0t1t2r3 + rorltlrzr3 + 3r0t1t2r2r3 + tlrzr?] ;
)
&
9
+ ... (20) .
c &
Wave-Mode Coordinate Solution
\ Using the wave-mode coordinate method described in {2], the following )
4
: solution may be obtained for Fl(t): '
6 1"
i ‘
-8 - :
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_ 1
F (e - (R +R ) (1 -y
1 2
« §(t) l T (rorl)nk((2n+l)1)
n=0
+ E (rot2r3tl)n ( § (rorl)mP(n+l, m)A(ZnT)A((2m+l)T))
n=1 m=0
( 5 (r2r3)mP(n,m)>\(2nT))\(2m'r))
' m=0
+ 3 rge(rgeyre)®( (47 ) "2 (rHL,mA (20 A ((2741) 7))
n=0 m=0
( z (r2r3)mP(n+1,m))\(2nT))\(2(m+1)T)>‘
m=0
(21)
where
P(n,m) = 52 s L (22)
and A (1) is a time-shift operator defined by
f(OA(T) = f(£ - T) (23)

The quantities T1s Tos tl and t, are defined by eqns. (14) through (17),
and T, and r, are again the reflection coefficients at the left-hand and
right-hand boundaries of the lattice, respectively.

The derivation of eqn. (21) 1is discussed in detail in [2]. Eqn. (21)

may be obtained by setting Tl = T2 = T (where Tl and 12 are the
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characteristic transit times defined previously) in eqn. (103) of [2].

Writing out the first few terms of eqn. (21) gives

a5
Fp(0) -</()(R1+R2) 1 -ry

2

Sy () + rrAGT) + (ror)2A(5T) +an. |

( 1* T r,r,A Q3T I T) 1

+ r3t16(t)E\(T) + rorl)\(3'l.') + (rorl)ZX(ST) +]

. i;\(ZT) + e (T + (r2r3)2)\(61) +A}

+ (rgt,r,E)8(0) [A(3T) + 2ryr A (5T) + 3(r0r1)2>\(7r) +_[

. E\(Zr) + r2r3)\(41') + (r2r3)2X(6T) +]

(rot r l)G(t)E(BT) + 2r0rl>\(5r) + 3(r0r1)2)\(7'r) +]

+r3tl 2 3t

p—

2
. l_)\(ln') + 2r2r3)\(61‘) + 3(r2r3) A(87) +—:

2 . 2
+ (rot2r3t1) §(t) 1A(5T) + 3r0rl>\(71’) + 6(r0rl) A(9T) +_l,

|

. E\(&T) + 2r2r3)\(6T) + 3(r2r3)2)\(81) +...

2 2
+ r3t1(r0t2r3tl) S(t){A(51) + 3rorl)\(7'r) + 6(r0r1) A(91) +]

. E\(fn') + 3r,00(80) + 6(r2r3)2>\(10T) +_‘

+l (24)
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Grouping the terms in eqn. (24) according to their time delays gives

. R
-9 1 -
F (0 = (Rl n R2> S
. [d(t)x(r)[l] + 8N ED e, + r3t;}

2
+ 6(t)k(5r)[}rorl) + r3t1r0rl + r3t1r2r3 + r0t2r3t£}

+ 6(t)A(7T){}rOrl)3 +r tl(rzr 2 +r t.r.r.r.r

3 3 37170123

2
+ r3t1(r0r1) + (r0t2r3t1)r2r3

+ 2(r0t2r3tl)r0rl + r3tl(r0t2r3t1{}

+ 6(t)k(9T)rkr r )"+ r,t r )3 +r.tr.r (r,.r )2
L fo'1 3

(r,ry 3515071 2"

1

2 3
+ r3t rl) r.r.. + r.t (r.r,)

1{%g 253 351'F0"1

2
+ r0t2r3tl(r2r3) + 2r0t2r3tlr0rlr2r3

2
+ 3r0t2r3t1(rorl) + 2r3tlr0t2r3t1r2r3

-
r.t )2‘

+
+ 2r. t.r .t r.t.r.r (rOt2 3t |

371023101

+ G(t)k(llr)[Erorl 5 + r3t1(r2r3)4 + r t.r.r (r2r3)3

371701

2 2 3
+ r3tl(r0rl) (r2r3) + r3tl(r0r1) T,
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r )4 + t,r.t
01 Tot2"3

3
raty (r 1(fpTy)

2
+ 2r r.t.r.r (r2r3)

0t253%1%0"1

2
+ 3rot2r3tl(r0rl) r2r3

3
+ &roterCl(rorl)

+ 3r3tl(r0t2r3tl)(r2r3

+ 4r3tl(r0t2r3tl)r0rlr2r3

2
+ 3r3tl(r0t2r3tl)(r0rl)

r.t )2r r

+ 2(rgt, raty) roTy

2
+ 3(r0t2r3tl) rorl

+ t(trt)2
T3F1'for2t 3t |
+... (25)

Comparison of Pulse Summation Solution and Wave-Mode Coordinate Solution

Since both eqn. (7) and eqn. (21) are expressions for the same
physical quantity Fl(t)’ eqns. (7) and (21) give, when expanded, identical
results. Note that if point 1 is a free end, then ro = 1, and both eqns.
(7) and (21) give Fl(t) = 0, as required by the boundary condition at a

free end. It can be seen from eqns. (20) and (25) that the first few

- 12 -
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|
terms of eqn. (7) are indeed identical with the corresponding terms of
(] eqn. (21). Note that in the pulse summation solution given by eqn. (7),
the impulses are grouped according to the time delay, whereas in the wave-
mode coordinate solution given by eqn. (21) some manipulation is necessary
1‘ before the impulses can be grouped according to the time delay.
=3
Equivalent Paths i;
® The numerical constants represented by the quantities Nl(Kl’KZ’Ll) “’
and NZ(KI’KZ’LI) in eqn. (7) and the quantities P(n+l, m) and P(n,m) in Efj
eqn. (21) are due to the existence of equivalent paths from the input EZ”
v location (the joint) to the output location (point 1) of the lattice in i:g
Fig. 1. The concept of equivalent paths in one-dimensional structures }:i
consisting of multiple segments is discssed in detail in [1]. Basically, Gj
\ 4 a path A from input location to output location is equivalent to a path M;’
B from input location to output location if a pulse which travels along lcj
path A arrives at the output location with the same time delay and the :;
@ same amplitude as an identical pulse which travels along path B. For o~
example, the four equivalent paths represented by the underlined term i}f
argrltitzrzrg in eqns. (20) and (25) are shown on x-t diagrams in Fig. 2. E;
‘0 (The coordinate x is defined in Fig. 1.) An impulse of initial amplitude ‘.
\ é;g arrives, after following any of the four paths shown in Fig. 2, at ;3
\ -y
; point 1 with a time delay of 11T and an amplitude of Eg

)
@

R
U 1 2 2 3
g}%¥ ) (1 - ro)ror t.t,r,r for each of the four waves.

R, + R 1172723 "
1 2 o
r
: ~
The pulse summation method is a time domain method which is based F‘
\.4
f
@ upon a systematic enumeration of equivalent paths within a structure [1]. )
The wave-mode coordinate method, on the other hand, is a frequency domain ‘:.
. \
n:,)
- 13 - N
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»

method which gives no explicit consideration to the existence of equivalent F:
Y
paths. The numerical constants which appear in the wave-mode coordinate
solution, and which in fact account for the existence of equivalent paths,
appear naturally in the wave-mode coordinate method as a part of the process

of Fourier inversion [2].
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CONCLUSIONS AND RECOMMENDATIONS

l o
In this investigation, nondispersive pulse propagation in a one-
i dimensional lattice structure consisting of two segments is analyzed
"’ using the pulse summation method and the wave-mode coordinate method.
It is shown that the two methods give identical results, and that both
methods account for the existence of equivalent paths in the lattice
o structure.
. Both the pulse summation method and the wave-mode coordinate method
may be extended to nondispersive pulse propagation in one-dimensional
¢ lattice structures consisting of an arbitrary number of segments. Such
an extension of the pulse summation method is considered in [1].
Using the general procedures described in [2], the extension of the
& wave-mode coordinate method to the analysis of nondispersive pulse propa-
gation in two and three-dimensional lattice structures presents no major
conceptual difficulties. The extension of the pulse summation method to
o two and three-dimensional structures seems feasible, but has not yet been
accompl‘shed. The exploration of equivalent paths in two and three-
dimensional lattice structures may prove to be very interesting.
< The problem of dispersive pulse propagation in lattice structures
may also be analyzed by the wave-mode coordinate method described in [2]
with no major conceptual difficulties. Computational difficulties are
< expected, however, for complex structures. The extension of the pulse
. summation method to dispersive pulse propagation does appear to present
Y
' major conceptual difficulties. In the dispersive problem, pulses do not
9 maintain their shape as they propagate, and it is not clear how to include
the effects of dispersion into the pulse summation method.
< - 15 -
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